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Milne et al. found that when social cont

act decreased by 70%, the infection rat

e decreased from 66% to 1%;

 Based on SEIRS model, Huang et al. fo

und that 50% isolation degree in long-te

rm social distancing is the turning point

to control the transmission of the epide

mic.

 As of June 2021, more than 230 countri

es and regions were recorded over 1.6

hundred million Coronavirus disease 19

(COVID-19) confirmed cases and almos

t 3.4 million deaths

From top to down：Many countrie

s have implemented population-level ph

ysical distancing measures and movem

ent restrictions such as business closur

e, community lockdown, and large-scal

e public gatherings cancellation

From down to top： People stay a

t home, wear masks, change their trave

l mode. But lack efficient and accurate t

ravel strategy.

COVID-19 

global prevailing

epidemic prevention

regularly

Social distancing

Effective measures
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• How to simulate social distancing 

motion? 

• What spatial factors influence soc

ial distancing?

Literature Review Problems and Objectives

Social Distancing

Problems Objectives

Literature Review

Modeling

Simulation

Conclusions

Background

Problems

• Develop a systematic simulation-

based approach through 

integrating pedestrian dynamics 

with a modified susceptible-

exposed-infectious model.  

Related Works



Epidemiology

• Yu et al. Based on the computational fluid particle dynamics model simulation, confirmed the validity of 
wearing masks in public places;

• Carli R et al. combined nonlinear model predictive control and improved SIR Model to support the

government to determine the most effective strategy in the multiregional mitigation.

• Based on SEIRS model, Huang et al simulated the epidemic situation of 4 countries and found that 50%

isolation in long-term social distancing is the turning point to control the transmission of the epidemic.

• Population remains constant, but the volume of pedestrians in real is variable

• Fails to observe actual infections because not considered human interactions in crowds

SIR

SEIRS

CFRD

pedestrian 
dynamics

• Zhao et al. analyzed the agent simulation data through spatial clustering algorithm, which helps to reveal the

spread of the epidemic situation and plays a positive role in the monitoring and prevention of epidemics.

• Based on reinforcement learning, Fang et al. established the interaction model between individual and

environment to simulate the development process of covid-19 epidemic without intervention and with

intervention respectively

• Namilae et al. have formulated a SFM based multiscale model to study the Ebola transmission within airplanes,

the results of which guide boarding and deplaning policies on the geospatial spread of infectious diseases.

Agent
Based

AI

Force

Literature Review Related Works

• According to the multidisciplinary features, existing works can be categorized into

two main aspects, epidemiology and pedestrian dynamics.
Literature Review
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Simulation

Conclusions

Background

Problems

Related Works

Weakness

• Few attentions have been paid to the social distancing dynamics.

• Self-organization phenomena were not mainly considered in pedestrian dynamicsWeakness
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Modeling Methodology The Social Force Model

+Qualitative

qualitatively describe 

the phenomenon of 

crowd dynamics

Collective

effects

+Force model

move continuously by 

defining some forces

Continuous 

simulation

+Interaction

considering physical and 

motivational forces

psychology 

& social 

interaction

◼ Advantages

this study chooses the social force model as the basic 

to study the social distancing dynamic.

+Modeling

Simulation

Conclusions

Background

Social Force Model

Literature Review

Social distance Model

Infection Assessment



The conception of “social force” was introduced to keep reasonable distances among 

individuals. The social force model is proposed by Helbing and Molnár in 1995, where the 

pedestrians were driven by three forces:

desired force Ԧ𝑓𝑖，interaction force between pedestrians Ԧ𝑓𝑖𝑗 ，interaction force between 

pedestrian and walls Ԧ𝑓𝑖𝑊

Social Force Model Basic Concepts

Ԧ𝐹𝑖 = Ԧ𝑓𝑖 + ෍

𝑗 ≠𝑖

Ԧ𝑓𝑖𝑗 + ෍

𝑊

Ԧ𝑓𝑖𝑊
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Social Force Model desired force 

pedestrians 𝒊 of mass 𝒎𝒊 likes to move with a certain desired speed 𝒗𝒊
𝟎 in a certain 

direction 𝒆𝒊
𝟎 , and therefore tends to correspondingly adapt the actual velocity 𝒗𝒊 with a 

relax time 𝝉𝒊

Ԧ𝑓𝑖 = 𝑚𝑖

𝑣𝑖
0 𝑡 Ԧ𝑒𝑖

0
𝑡 – Ԧ𝑣𝑖 𝑡

𝜏

Newton's second law： Ԧ𝐹 = 𝑚 Ԧ𝑎

Acceleration Formula： Ԧ𝑎 =
∆𝑣

∆𝑡
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Including repulsive interaction force (𝒇𝒊𝒋
𝒔 )，body force (𝒇𝒊𝒋

𝒃 )，sliding friction force 

(𝒇𝒊𝒋
𝒇

). 𝑨𝒊 interaction strength, 𝑩𝒊 interaction range. 𝒅𝒊𝒋 = 𝒓𝒊 − 𝒓𝒋 is the normalized vector 

pointing from pedestrian j to i. 𝒓𝒊𝒋 = 𝒓𝒊 + 𝒓𝒋 the sum pedestrian radii.

Social Force Model interaction between pedestrians 

Modeling

Simulation

Conclusions

Background

Social Force Model

Literature Review

Social distance Model

Infection Assessment



Social Force Model interaction between pedestrian and walls 

Similar to the interaction between pedestrians   

Modeling

Simulation

Conclusions

Background

Social Force Model

Literature Review

Social distance Model

Infection Assessment



Social Force Model The Simulation Outcome

• Closed room • smoke

• passageway • obstacle

picture source：

Helbing, D., I. Farkas, T. Vicsek. Simulation Dynamical Features of Escape Panic[J]. Nature, 2000(407): 487-490．
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S F M  M o d i f i c a t i o n
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Slowing down within the 

desired social distance

Falling back when too close to others

In
fl

u
e

n
ti

a
l Velocity DistanceVisual Prevention 

𝒗𝒊
𝒎𝒊𝒏 𝒗𝒊

𝒎𝒂𝒙 𝒅𝒊𝒋
𝒎𝒊𝒏𝑽𝒊𝒋 𝑫𝒊𝒋

Physiological Psychological

I n f l u e n t i a l  f a c t o r s

P a t h  P l a n n i n g
N
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n

Dijkstra algorithm Direction correction
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Velocity

Distance

Visual

Prevention 

𝒗𝒊
𝒎𝒊𝒏 𝒗𝒊

𝒎𝒂𝒙

𝒅𝒊𝒋
𝒎𝒊𝒏

𝑽𝒊𝒋

𝑫𝒊𝒋
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𝑉𝛼𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠
Ԧ𝑣𝛼 ⋅ 𝑥𝛽 − 𝑥𝛼, 𝑦𝛽 − 𝑦𝛼

Ԧ𝑣𝛼 𝑥𝛽 − 𝑥𝛼
2

+ 𝑦𝛽 − 𝑦𝛼
2

𝑑𝛼𝛽
𝑚𝑖𝑛 = 𝑚𝑖𝑛{ 𝑑𝛼𝛽 − 𝑟𝛼𝛽; 𝛽 ≠ 𝛼}

𝐷𝛼𝛽 = Τ𝐷𝛼 + 𝐷𝛽 2

Ԧ𝑣𝑖 𝑡 = Ԧ𝑒𝑖
0 ൞

𝑣𝑖
𝑚𝑖𝑛,  𝑣𝑖 𝑡 < 𝑣𝑖

𝑚𝑖𝑛

 𝑣𝑖 𝑡 ,  𝑣𝑖
𝑚𝑖𝑛 ≤ 𝑣𝑖 𝑡 ≤ 𝑣𝑖

𝑚𝑎𝑥

𝑣𝑖
𝑚𝑎𝑥,  𝑣𝑖 𝑡 > 𝑣𝑖

𝑚𝑎𝑥

𝑑𝛼𝛽 = 𝑥𝛽 − 𝑥𝛼
2

+ 𝑦𝛽 − 𝑦𝛼
2

𝑟𝛼𝛽 = 𝑟𝛼 + 𝑟𝛽



Social Distance Model desired force 

𝒇𝒊(𝒗𝒊, Ԧr𝒊, Ԧr𝒋
𝒊)=𝛁r𝒊

𝑽𝒋( Ԧr𝒊 − Ԧr𝒋
𝒊 )

expressed as a potential 𝑽𝒋 monotonically 

increasing with distance

Deceleration movement with 

the desired speed of 0

𝒇𝒊(𝒗𝒊)

◼ Increasing distance dependence:
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◼ Increase social distance repulsion:

Social Force Model interaction between pedestrians 

𝒇𝒊𝒋 𝒕 ′ = ෍

𝒋 ≠𝒊

𝒇𝒊𝒋 𝒕

No repulsive forceRepulsive force from pedestrian j to i

pedestrian

𝒇𝒊𝒋 𝒕 ′ = ෍

𝒋 ≠𝒊

𝒇𝒊𝒋 𝒕 + 𝒇𝒊𝒋
𝒑

𝒕
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Social Force Model Infection Assessment

Modeling

Background

Social Force Model

Literature Review

Simulation

Conclusions

Social distance Model

Infection Assessment

• denote by 𝐶𝑛 the quanta of contaminants of aerosols that a 

pedestrian contact in a breathing cycle with adjustment coefficient 

𝛾. Then the probability for infection 𝑝 is given by a Poisson 

distribution：

𝑝 = 1 − 𝑒−𝛾𝐶𝑛



Social Force Model Pattern diagram
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To verify the utility of the social distance model under the epidemic situation, we

designed three pedestrian activity scenarios as follows

The mean number of new infections and average contact number are two essential

measures to assess performance of different space management.

Computer Simulation environment

◼ Simulation environment
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Simulation

Conclusions

Environment

Comparative

Dynamic



Closed room ：Altering the exit width to

3-m-wide (layout 1) and the number of

exits to two 1.5-m-wide (layout 2).

Winding queue ： Horizontal queue

(layout 1) and queue with sideward

separations (layout 2).

Corridor: A series of columns in the

middle (layout 1) and unbridgeable

railings in the middle (layout 2).

◼ Comparative experiments

Modeling

Background

Literature Review

Simulation

Conclusions

Environment

Comparative

Dynamic



Modeling

Background

Literature Review

Simulation

Conclusions

Environment

Comparative

Dynamic

Social distance rate = 0%

Social distance rate = 100%

◼ Closed room
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Social distance rate = 0%

Social distance rate = 100%

◼ Winding queue
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Social distance rate = 100%

◼ Corridor



Modeling

Background

Literature Review

Simulation

Conclusions

Environment

Comparative

Dynamic

◼ Corridor



Modeling

Background

Literature Review

Simulation

Conclusions

Environment

Comparative

Dynamic

◼ Corridor



PART 5

5
5

Conclusions



Modeling

Background

Literature Review

Simulation

Conclusions

Hypothetical scenario analyses indicated that proper plan layout plays a vital role 

in the spread of COVID-19 during social distancing. 

Closed Room: Both strategies of increasing the numbers and width of the 

entries are effective in infection propagation in a crowd and closed room. 

Corridor: the study found that social distancing in a linear corridor used by 

oppositely moving pedestrians may cause deadlocks and block the area, leading 

to large-scale infection transmission. Arranging railings in the middle of the 

corridor can avoid potential irregular motion, which effectively reduces contact 

number and suppressing the disease spread. 

Winding queue: the simulation shows that a winding queue with fewer corners 

reduces the contact frequency of pedestrians and thus lowers the infection 

spread. Setting sideward separations between adjacent aisles is another 

effective configuration, leading to lower infective exposure.

Conclusions
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